organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Deepak Chopra,^a* K. Nagarajan^b and T. N. Guru Row^a

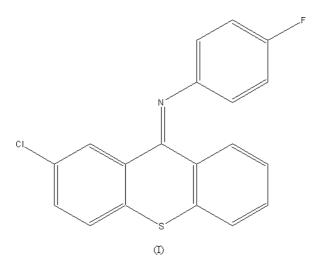
^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^bHIKAL India Limited, Bannerghatta Road, Bangalore 560 078, Karnataka, India

Correspondence e-mail: deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.092 wR factor = 0.244 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


N-[(9*E*)-2-Chloro-9-thia-9*H*-xanthen-9-ylidene]-*N*-(4-fluorophenyl)amine

In the title compound, $C_{19}H_{11}$ CIFNS, the central 4*H*-thiapyran ring of the 9*H*-thiaxanthene moiety shows a roof-shaped structure, with a dihedral angle of 34.3 (2)°. The molecules pack in the crystal structure *via* aromatic π - π interactions.

Received 8 November 2004 Accepted 16 November 2004 Online 27 November 2004

Comment

Molecular organization and molecular interactions are the features that are responsible for molecules exhibiting different functional properties. An understanding of non-covalent interactions becomes essential for interpreting and predicting relationships between chemical structure and function (Hunter *et al.*, 2001). Crystal engineering *via* the manipulation of hydrogen bonding has attracted much interest in the recent literature (Aakeröy, 1997; Desiraju, 2000). Aromatic interactions involving π - π stacking are an important feature in molecules which contain aromatic groups. A structural study of the title compound, (I), has been carried out as a case study where there is no possibility of formation of hydrogen bonds and is hence thought to be suitable for the study of weak intermolecular interactions.

A molecular view of (I) with the atom-labelling scheme is shown in Fig. 1. The 9*H*-thiaxanthene unit is significantly distorted from planarity, as seen from the torsion angles (Table 1). The central 4*H*-thiapyran ring shows a roof-shaped structure, the dihedral angle between S1/C6/C11/C12 and S1/ C5/C13/C12 being 34.3 (2)°. The 9*H*-thiaxanthene unit bends away from the 4-fluorophenyl group, precluding the formation of a possible intramolecular C $-H\cdots\pi$ interaction. The dihedral angle between the rings C1–C5/C13 and C14–C19 is 62.1 (1)°. This feature also decreases the steric repulsion between atoms H15 and H1 (bonded to C15 and C1, respec-

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

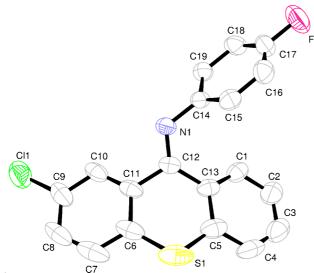


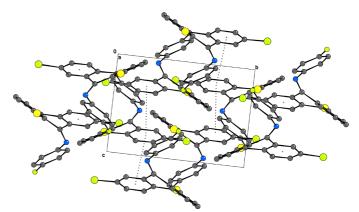
Figure 1

The molecular structure of (I), showing 40% probability ellipsoids. H atoms have been omitted for clarity.

tively), which is indicated by the bond angle C12-N1-C14 [122.6 (4)°] being only slightly distorted from the ideal value of 120° .

There are no weak intermolecular interactions involving the halogen atoms (Cl1 and F1). The packing features π - π stacks along the *c* axis involving the aromatic ring carrying the Cl atom, the separation between the stacks being 3.779 (3) Å (Fig. 2).

Experimental


Compound (I) was synthesized according to a procedure reported in the literature (Nagarajan *et al.*, 1974). It was crystallized from an ethyl acetate/hexane solution by slow evaporation at 278 K.

Crystal data

C ₁₉ H ₁₁ CIFNS $M_r = 339.81$ Monoclinic, $P2_1/c$ a = 20.052 (4) Å b = 10.3835 (19) Å c = 7.5229 (14) Å $\beta = 99.375$ (3)° V = 1545.4 (5) Å ³ Z = 4	$D_x = 1.461 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 964 reflections $\theta = 1.7-25.6^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 293 (2) K Block, yellow $0.46 \times 0.24 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.841, T_{\max} = 0.933$ 12 306 measured reflections	3378 independent reflections 2107 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 28.0^{\circ}$ $h = -26 \rightarrow 25$ $k = -12 \rightarrow 12$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.092$ $wR(F^2) = 0.244$ S = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1619P)^{2} + 1.1895P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\max} < 0.001$

 $\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Packing diagram of (I), indicating the aromatic π - π interactions by dashed lines. H atoms have been omitted for clarity.

Table 1		
Selected geometric parameters ((Å,	°).

N1-C12	1.271 (5)	N1-C14	1.408 (5)
C12-N1-C14	122.6 (4)		
C12-N1-C14-C15 C14-N1-C12-C13	-62.1 (5) -7.7 (6)	C5-S1-C6-C11 C6-S1-C5-C13	-28.0 (4) 28.5 (4)

All H atoms were constrained to ride on their parent atom, with C-H = 0.93-0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest peak of the difference density is 1.06 Å from atom S1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *PLATON* (Spek, 2003).

We thank the Department of Science and Technology, India for data collection on the CCD facility set up under the IRFA– DST programme. DC thanks the CSIR, India, for a Junior Research Fellowship.

References

Aakeröy, C. B. (1997). Acta Cryst. B53, 569-586.

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2000). *SMART* (Version 5.628) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001) J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
- Nagarajan, K., Kulkarni, C. L. & Venkateswarlu, A. (1974). Indian J. Chem. 12, 247–251.
- Sheldrick, G. M.(1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

H-atom parameters constrained

3378 reflections

208 parameters

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.